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Outline

- Introduction: Micro/Nano-Electro-Mechanical
Systems

- M/NEM switches/relays for logic
- M/NEM resonators:
= Passive resonators, filters and mixers

=Resonant gate or body transistors to amplify small
signals M/NEM inertial sensors:

* Accelerometers
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Introduction

MEMS = Micro-Electro-Mechanical Systems

(include suspended and/or movable parts)

I

Microfluidics Optical Radio Frequency Bio

Energy
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MEMS Switch/Relay

Electro-mechanical information processing:

as a multi-state logic, with the logic states dictated by a spatial
configuration of movable objects

MEM RELAY Movable part F=====
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Electromechanical design of pull-in voltage

Pull-in / Pull-out electromechanical hysteresis of capacitive switch

g, = zero—voltage gap spacing
g=8, X

g
et = Lo +_8ng

T

oAV 2

K 2

el

2g
FS - k(go _g)

A

Cup =C(V=0)=¢,
8eff

A
Cdown = C(V > VPI) =808 —

€

Cdown _ i 8efr ~ €80

= ~

Cp g g

V7 ]

/
J_ Dielectric (g,)

Pull-in @ 1/3 of
the air gap!

—
A
\ 4

Hysteresis
C [pF]

= Pull-out
voltage

Pull-in
voltage

Cup| """"""""""""""""""""""""""
P I
V=0V  V,, v, IV

Source: H. Tilmans, IMEC.
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MEMS actuation mechanisms

Voltage Current Size Switchtime Force (contact)

(V) (MA) (us) (uN)
Electrostatic  1-100 ~0 Small 1-200 50-1000
Thermal 3-9 1-100 Large 300-10'000 500-5'000 f
Magnetic 3-5 10-100 | =<1 Medium 300-1°000 50-200 %
Piezoelectric® 3-20 ~0 Medium  50-500 50-200 Z
* Recent attention to quartz, GaAs, ZnO, PZT: Pb(Zr,Ti; ,)Os): Table adapted after Rebeiz[1]

mechanical stress polarizes the material = electrical field, works also reversely!

A.M. Ionescu

[1] Gabriel M. Rebeiz, RF MEMS: Theory, Design, and Technology.
ISBN: 978-0-471-20169-4, Wiley, March 2003.




UC Berkeley’s
4-terminal relay

03 Vs=Ve=0
VpebV
0.4
13} Drain voltage, Vge [V]

=

[=]
A
=]

==

[=]
a
ha

==

o=
o
Iy

Gate |

°"“"°’W
Body

Drain

(b) AA’ cross-section: OFF-state

Source

IDS

Channel

(c) AA’ cross-section: ON-state

E
n-relay éj.
1V . Vb 1V 3
100mV v 100mV S
— ——GND |’ 2
Pl?rga;-out Pull-in 5
[P
""G'—[IVB OFF CURRENT g
v ) Vs=0 j
s & Vpp=BY :

& ; & 0 2 4 B B 10

(l:l] Gate to body voltage, Vg [V]




... and mechanical inverter operation

Hysteretic voltage transfer characteristic
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Fig. 6.18. (a) Relay inverter schematic. Two similar devices are operated in n-type and p-type

modes. (b) Measured static and (¢) dynamic characteristics [34]. Vpyi1s

a =50Hz square wave.
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Rationale for MEMS resonators:
High Quality factor, Q

Information processing as vibrational modes of =
mechanical elements, based upon waves. Q=—=—

® Problem: IC’s cannot achieve Q’s in the thousands
G transistors - consume too much power to get Q
& on-chip spiral inductors 2 Q’s no higher than ~10
¢ off-chip inductors - Q’s in the range of 100’s

® Observation: vibrating mechanical resonances - Q > 1,000

¢ Example: quartz crystal resonators (e.g., in wristwatches)
L extremely high Q’s ~ 10,000 or higher (Q ~ 10° possible) , ,
& mechanically vibrates at a distinct frequency in a —
thickness-shear mode

0dB
-3dB

Hesponse

fa : Frequency

Q of a tuned circuit with respect to its bandwidth
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Principle

Micro-Electro-Mechanical resonator

272' m Clamped-clamped beam
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MEM resonator is tuneable in frequency

Mechanical domain equations:

mx +bx’+kx=F

Electrical domain analogy:

Tuning the
resonance frequency:

Lq”+Rq’+(1/C) q:Vi stiffness!
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Motional to electrical equivalent parts
and electrical small signal circui
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Need for low motional resistance & nanogaps

Motional resistance: _"_

Rm ~ gap4/V01tage2 :.......=

(1/10 gap, 1/10°000 R.) : |_.—w-. .
Example: _ L, =;F£2 -
freS:31MHZ, r=40um, tSi:1'25um EseN@sEEsEs ey namnnnEnEnnnnEnEn
Deep submicron gaps: 100-200nm, Mechanical resonator

Q>20°000, R,,.=130kOhm

100000 Disk resonator
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Quality factor mechanisms

. Energy stored _ w

— o

Energy loss/sec  Aw
Mechanism #1- Mechanism #3: Gas damping

(not an 1ssue 1In vacuum or

Material defect losses
for bulk resonators)
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Mechanism #2: Thermoelastic Mechanism #4: Anchor losses, needs
damping (TED) design optimization, important @
high frequency




Quality factor: impact of anchor loss
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MEMS filters

Resonator beam: has two electrical inputs v, (=v;) and v,(=Vp)

oFE 1 oC 1 oC
Fd — A :_(Ve _Vb)Z— :_( 62 _2vevb +Vb2)—
ox 2 ox 2 ox Resonatcr Beam
h
x= beam displacement and oc__ 5Wr2We
ox d, Fl*
- filtering applications W,
v,=Vp (dc bias), v,=v=V,coswt Ve
oc(v? w2\ . ac ocV
F, = L4 |=V,—V.coswt+—-—Lcos 2wt
ox\ 2 4 Ox ox 4 K
=
< < <
Off resonance dc Component used in filtering

force




MEMS filters: examples
2-beam MEM filter Many coupled devices
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Resonant gate or body transistors: active
MEMS resonators &

Vibration modulates
the channel charge

4 gate

Can potentially
amplify the signal

A transistor
in a guitar
string
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Nanowire resonators

Nanomechanical resonators based on single-crystal silicon nanowires (SINWs) prepared by
the bottom-up chemical synthesis — fres ~ 200 MHz , Q = 2’000 - 2’500.
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Vibrating body FET

D MOSFET detection
VGl = VAC + 16V

- 54
] V, = Vpc - 16V
D rain ° v§2= L85V
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RF MEMS front-ends

- Ultra miniaturized single-device radios (RF front ends)

M

= RB-FINFET tuning fork

i - as front-end FM-receiver:
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GATE 1 p+

p'l-

GATE 2

400 nm

NEMS nanobalances for
molecule/atom sensing

Ultra-scaled resonant transistor:

fres ~70 — 200MHz
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* Mass accretion of 1.3 ag (top)

detected: corresponds to

approx. 4000 gold atoms

* Scalable to detect ~10 atoms

» Applications:

v' biomarkers for early
cancer detection

v integrated gas sensors

v integrated particle
sensors
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Gas sensors with NEMS (by Caltech)

a_}-}- :"':‘2_; ? . Mass Responsivity 5 Hz/ag
e ] | Rl fooz8)
Operating Pressure 1 atm (780 torr)

= o 4 g o o] [rer— T
=__:__:_=__=__:_: No. of Sensor Elements 25,000

=
ga
Powaer Consumption =100 mW g
| <
= ©
=
LOD - 200ppt DIMP Sensor Response Time Multisensor Discrimination ES
(single sensor, no preconc.) <20ms - of 13 Analytes 2
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Conclusions: M/NEM resonators

- Large opportunities for NJMEM resonators in
enabling new low power analog/RF systems (co-
integration with silicon ICs) for filtering and mixing
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- Future role of vibrant (resonant) FET devices for low
power integrated sensing

Nanoscale CMOS

- NEM resonators: key components for future advanced
signal electro-mechanical processing, from analog/RF to
sub-attogram sensing.




MEMS Inertial Sensors (I

F—
- In any inertial system, a proof mass, m, is suspended on a
mechanical frame by a spring, k_, and responds to an Kim
input force, F, mirroring the quantity to be measured. _fm\_
. . b m
- The input force causes a displacement, x, of the mass,
and the displacement is measured to sense the force
coming from: ke Cs(x)
- acceleration of the mass, as is the case in an —/m\— I I I %i
accelerometers 2
from a Coriolis acceleration, resulting from angular E
rotation of the mass, as is the case in a vibratory rate Vg é
gyroscope. g
g
- Design optimization of inertial sensors aims at high 2
transduction gain, while rejecting the effects of Z
parasitic forces on the mass. Sl
- The inertial MEMS sensors require analog/mixed-signal s [, |LF 1 X |y, 9 | Q sensor ;O
<

circuitry to process and digitize the sensor output. ms?+bps+ky+ke ox output




Transduction mechanisms

(x dCq(x
ICs ) Ay AF(Av) = &80 ( Dy A,

AQ(Ax) =
Q(Ax) N "

Capacitance Charge Force Spring
P transduction transduction constant MEMS Accelerometer

C(x) AQ(AX) AF(Av) ke
S
=
% Ve X|—>
T
o WA £ A
o _| _EoA_ SU—ZVBAX O_ZVBAV _%Vg
L;_ 8p—X 80 8o 80
o 9o —»| e
©
© A: plate area
oo [ ../““

i

S X 3
g Vg > f
S i Eow(l + x) € € 3
5 :l—{ L 207 ypAx 20y Ay 0 :
= A 80 80 80 S
T Y0 <
o) _ =
IS w: comb width <
& I: comb overlap @ x=0

Table 1. Charge transduction, force transduction, and electrostatic spring constant for two common capaci-
tor types.



Accelerometer system

Consumer applications
F— * Output data rates of a few kHZ
kn m 00  Full-scale ranges of 16g
1 * 1216 bit resolution
. * DC accuracy over temperature and
D . .
lifetime:

. o)
@) drift ~500 ppm levels g
Force Mechanica Charge (corresponding to, e.g., 10 mg for a o
transduction ynamics transduction 16g fu]_]__sca]_e range), Which implies 5
oA e ’ x |y | Q@ sensor that sub-nanometer displacements S
Acceleration msTHbps Ry ke Doy output . o . )
are significant for micron-scale E
(b) gaps. -
Z
AC,(X) %
| > ADC %
Yo SFI% == =
<

(0




Inertial MEMS for human activity (1)

Engineering aspects:

- Design optimization of inertial sensors aims at high transduction gain, while
rejecting the effects of parasitic forces on the mass.

- Inertial MEMS sensors require analog/mixed-signal circuitry to process and
digitize the sensor output.

- Important aspects for the wearability: low power consumption and the
small size.

- The energy efficiency of inertial sensors is currently evaluated by some specific
figures of merit such as a power ratio of peak SNR to energy per conversion.
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- Other practical aspects (packaging, cost, etc).




Inertial MEMS for human activity (2)

- Status in MEMS for inertial measurement:

- major technology & package progress made by ST Microelectronics, Texas Instruments and
InvenSense

« ST Microelectronics (2014):
- 3 Billions MEMS units, with manufacturing capacity larger than 3 Mu/day

* Include analog and digital accelerometer and gyroscope sensors with advanced power
saving features for ultra-low-power applications.

e — 3-Axis Accelerometer Orientation
silicon slm:u:re o
MEMS wafer . .
1 ST Microelectronics
External lﬁ%
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Figure 6. InvenSense silicon MEMS/CMOS fabrication technology: a) assembly; b) device cross-section.



Ultra-low power NEMS-accelerometers

9 _ic,,

I(t) =
® dt ot

Applications : airbag (but no real need for
miniaturisation), Ipod, videogames, mini-
drones, etc.
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SEM images of micro and nano-systems fabricated at LETI-CEA (Grenoble)



Inertial sensors for automotive

Automotive sensors
MEMS sensors for vehicle dynamics control VDC

MEMS sensors for vehicle

ke o : dynamics control VDC

[1] Inertial sensor
[2] High pressure sensor
[3] Inertial sensor

[4] Sensor cluster with yaw rate
and acceleration sensor

[5] Low-g acceleration sensor for

active suspension

Source: Bosch
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Commercial MEMS IMU’s

Consumer MEMS success story

. . .
Continuous innovation Wordsfist gy Optea
a 2 microsystems
indoor air
, SR onsN Smallest high
_ Worlds Full portfolio of Sensor Smart performance
_, smallest digital acceleration and 3x3 mm? system with sensor = barometric
pressure sensor pressure sensors eCompass pressure sensor

pController hubs

2005 2006 2007 2008 2010 2011 2012 2013 2015

2016 2017 2018

First World’s

First 2x2 mm? World's Ultra low
‘ acceleration ’ smallest digital acceleration smallest power IMU
sensor acceleration sensor gyroscope in
sensor 3x3 mm?

Bosch sensortec | Markesing | 5/17/2017

World’s To be
‘ smallest 9- continued...
axis sensor

Intelligent
‘ acceleration
sensor

() BOSCH
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