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Outline

• Introduction: Micro/Nano-Electro-Mechanical
Systems

• M/NEM switches/relays for logic
• M/NEM resonators:
Passive resonators, filters and mixers
Resonant gate or body transistors to amplify small
signals M/NEM inertial sensors:

• Accelerometers
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Introduction
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MEMS = Micro-Electro-Mechanical Systems
(include suspended and/or movable parts)

Microfluidics Optical Radio Frequency Bio
Energy
scavenging



MEMS Switch/Relay
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Electro-mechanical information processing:
as a multi-state logic, with the logic states dictated by a spatial 

configuration of movable objects

MEM RELAY Movable part
Pull-in
voltage

Pull-out
voltage
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Pull-in / Pull-out electromechanical hysteresis of capacitive switch
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Source: H. Tilmans, IMEC.

Pull-in
voltage

Pull-out
voltage

Electromechanical design of pull-in voltage

Pull-in @ 1/3 of 
the air gap!



MEMS actuation mechanisms
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ISBN: 978-0-471-20169-4, Wiley, March 2003.
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UC Berkeley’s
4-terminal relay

‘ZERO’
OFF CURRENT

Pull-inPull-out
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… and mechanical inverter operation
Hysteretic voltage transfer characteristic



Rationale for MEMS resonators:
High Quality factor, Q
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Information processing as vibrational modes of 
mechanical elements, based upon waves.



Principle
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Micro-Electro-Mechanical resonator

Clamped-clamped beam

Electrode

+
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~ac signal

Output signal:
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MEM resonator is tuneable in frequency
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mx’’+bx’+kx=F

Mechanical domain equations:

Electrical domain analogy:
Tuning the 
resonance frequency: 
stiffness!



Motional to electrical equivalent parts 
and electrical small signal circuit
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Need for low motional resistance & nanogaps

Motional resistance:

Rm ~ gap4/voltage2

(1/10 gap, 1/10’000 Rm)
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Example:
fres=31MHz, r=40um, tSi=1.25um
Deep submicron gaps: 100-200nm, 
Q>20’000, Rm=130kOhm

Of major 
interest, to 
minimize



Quality factor mechanisms
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Mechanism #1: 
Material defect losses

Mechanism #2: Thermoelastic
damping (TED)

Mechanism #3: Gas damping
(not an issue in vacuum or 
for bulk resonators)

Mechanism #4: Anchor losses, needs
design optimization, important @ 
high frequency



Quality factor: impact of anchor loss
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K. Wang, A.C. Wong, C.T. Nguyen, JMEMS, Vol. 9, Sept. 2000.

Effect of energy anchor lossfree

free

clamped clamped



MEMS filters
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 filtering applications
vb=VP (dc bias), ve=vi=Vi cosit
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Component used in filtering

Resonator beam: has two electrical inputs ve (=vi) and vb(=VP)



MEMS filters: examples
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2-beam MEM filter Many coupled devices

C.T.Nguyen, chapter in ‘RF Technologies for Low
Power Wireless Communications’, Wiley, 2002. 

Band-pass filter

Band-pass filter



Resonant gate or body transistors: active 
MEMS resonators
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drain

source

gate
A transistor 
in a guitar
string

Vibration modulates
the channel charge

Can potentially
amplify the signal



Nanowire resonators
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Nanomechanical resonators based on single-crystal silicon nanowires (SiNWs) prepared by 
the bottom-up chemical synthesis – fres ~ 200 MHz , Q  = 2’000 - 2’500.

X.L. Feng et al, Nanoletts, Vol. 7, 2007.



Vibrating body FET
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Fully-depleted RB-FET: 

D. Grogg et al, IEDM 2008.

frez = 2MHz

Rm = -30, amplifies!

frez = 70MHz



RF MEMS front-ends
• Ultra miniaturized single-device radios (RF front ends)
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S. Bartsch et al, ACSNano, 2012.



NEMS nanobalances for 
molecule/atom sensing
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Ultra-scaled resonant transistor:
fres ~70 – 200MHz
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• Mass accretion of 1.3 ag (top) 
detected:  corresponds to 
approx. 4000 gold atoms
• Scalable to detect ~10 atoms
• Applications: 
 biomarkers for early 

cancer detection
 integrated gas sensors
 integrated particle 

sensors



Gas sensors with NEMS (by Caltech)

A
.M

. I
on

es
cu

 @
 N

an
os

ca
le

 C
M

O
S 

an
d 

B
ey

on
d

23



Conclusions: M/NEM resonators

• Large opportunities for N/MEM resonators in 
enabling new low power analog/RF systems (co-
integration with silicon ICs) for filtering and mixing

• Future role of vibrant (resonant) FET devices for low 
power integrated sensing

• NEM resonators: key components for future advanced 
signal electro-mechanical processing, from analog/RF to 
sub-attogram sensing.
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MEMS Inertial Sensors
• In any inertial system, a proof mass, m, is suspended on a 

mechanical frame by a spring, km, and responds to an 
input force, F, mirroring the quantity to be measured. 

• The input force causes a displacement, x, of the mass, 
and the displacement is measured to sense the force 
coming from:
 acceleration of the mass, as is the case in an 

accelerometers
 from a Coriolis acceleration, resulting from angular 

rotation of the mass, as is the case in a vibratory rate 
gyroscope. 

• Design optimization of inertial sensors aims at high 
transduction gain, while rejecting the effects of 
parasitic forces on the mass. 

• The inertial MEMS sensors require analog/mixed-signal 
circuitry to process and digitize the sensor output. A
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Transduction mechanisms
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Accelerometer system
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Consumer applications
• Output data rates of a few kHZ
• Full-scale ranges of 16g
• 12–16 bit resolution
• DC accuracy over temperature and 
lifetime:
drift ~500 ppm levels 
(corresponding to, e.g., 10 mg for a 
16g full-scale range), which implies 
that sub-nanometer displacements 
are significant for micron-scale 
gaps.



Inertial MEMS for human activity (1)

Engineering aspects:
• Design optimization of inertial sensors aims at high transduction gain, while 

rejecting the effects of parasitic forces on the mass.

• Inertial MEMS sensors require analog/mixed-signal circuitry to process and 
digitize the sensor output.

• Important aspects for the wearability: low power consumption and the 
small size.

• The energy efficiency of inertial sensors is currently evaluated by some specific 
figures of merit such as a power ratio of peak SNR to energy per conversion.

• Other practical aspects (packaging, cost, etc). A
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Inertial MEMS for human activity (2)
• Status in MEMS for inertial measurement:
 major technology & package progress made by ST Microelectronics, Texas Instruments and 

InvenSense
 ST Microelectronics (2014):
 3 Billions MEMS units, with manufacturing capacity larger than 3 Mu/day
 include analog and digital accelerometer and gyroscope sensors with advanced power 

saving features for ultra-low-power applications.
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ST Microelectronics



Ultra-low power NEMS-accelerometers
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Inertial sensors for automotive
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Commercial MEMS IMU’s
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